800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

Abstract

General Description

The MAX9152 2×2 crosspoint switch is designed for applications requiring high speed, low power, and lownoise signal distribution. This device includes two LVDS/LVPECL inputs, two LVDS outputs, and two logic inputs that set the internal connections between differential inputs and outputs.
The MAX9152 can be programmed to connect any input to either or both outputs, allowing it to be used in the following configurations: 2×2 crosspoint switch, $2: 1$ mux, 1:2 demux, 1:2 splitter, or dual repeater. This flexibility makes the MAX9152 ideal for protection switching in fault-tolerant systems, loopback switching for diagnostics, fanout buffering for clock/data distribution, and signal regeneration for communication over extended distances.
Ultra-low 120pspk-PK (max) PRBS jitter ensures reliable communications in high-speed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery, or serializers and deserializers. The high-speed switching performance guarantees an 800Mbps data rate and less than 50ps (max) skew between channels.
LVDS inputs and outputs are compatible with the TIA/EIA-644 LVDS standard. The LVDS inputs are designed to also accept LVPECL signals directly, and PECL signals with an attenuation network. The LVDS outputs are designed to drive 75Ω or 100Ω loads, and feature a selectable differential output resistance to minimize reflections.

The MAX9152 is available in 16-pin TSSOP and SO packages, and consumes only 109 mW while operating from a single +3.3 V supply over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Cell Phone Base Stations
Add/Drop Muxes
Digital Crossconnects
DSLAMs
Network Switches/Routers
Protection Switching
Loopback Diagnostics
Clock/Data Distribution
Cable Repeaters

Features

- Pin-Programmable Configuration
2×2 Crosspoint Switch
2:1 Mux
1:2 Demux
1:2 Splitter
Dual Repeater
- Ultra-Low 120pSPK-PK (max) Jitter with 800Mbps, PRBS = 223-1 Data Pattern
- Low 50ps (max) Channel-to-Channel Skew
- 109mW Power Dissipation
- Compatible with ANSI TIA/EIA-644 LVDS Standard
- Inputs Accept LVDS/LVPECL Signals
- LVDS Output Rated for 75Ω and 100Ω Loads
- Pin-Programmable Differential Output Resistance
- Pin-Compatible Upgrade to DS90CP22 (SO Package)
- Available in 16-Pin TSSOP Package (Half the Size of SO)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX9152ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
MAX9152EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP

Pin Configuration appears at end of data sheet.
Functional Diagram

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

ABSOLUTE MAXIMUM RATINGS

VCC to GND..-0.3V to +4.0 VIN_+, IN_-, OUT_+, OUT_- to GND-0.3V to +4.0 V	
EN_, SEL_, NC/RSEL to GND...................-0.3V to (VCC + 0.3V)	
Short-Circuit Duration (OUT_+, OUT_-)Continuous	
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
16-Pin SO (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \mathrm{ab}$	º${ }^{\circ}$)..............696mW
16-Pin TSSOP (derate 9.4mW/	55 m

Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ ESD Protection

Human Body Model, IN_+, IN_-, OUT_+, OUT_-........... $\pm 7 \mathrm{kV}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{NC} / R S E L=$ open for $\mathrm{R}_{\mathrm{L}}=75 \Omega \pm 1 \%, \mathrm{NC} / R S E L=$ high for $\mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%$, differential input voltage $\mathrm{IV} / \mathrm{ID} \mid=$ 0.1 V to V_{CC}, input voltage $\left(\mathrm{V}_{I N_{+}}, \mathrm{V}_{\mathrm{IN}}\right)=0$ to $\mathrm{V}_{\mathrm{CC}}, E N_{-}=$high, $\mathrm{SELO}=$ low, $\mathrm{SEL} 1=$ high, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{I} \mathrm{V}_{\text {ID }}=0.2 \mathrm{~V}$, input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LVCMOS/LVTTL INPUTS (EN_, SEL_)						
Input High Voltage	V_{IH}		2.0		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		GND		0.8	V
Input High Current	IIH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or 2.0 V	0		20	$\mu \mathrm{A}$
Input Low Current	IIL	$\mathrm{V}_{\text {IN }}=0$ or 0.8 V	-10		10	$\mu \mathrm{A}$
NC/RSEL INPUT						
Input High Voltage	V_{IH}		2.0		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		GND		0.8	V
Input High Current	IIH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or 2.0V	0		20	$\mu \mathrm{A}$
Input Low Current	IIL	$\mathrm{V}_{\text {IN }}=0$ or 0.8 V	-10		10	$\mu \mathrm{A}$

DIFFERENTIAL INPUTS (IN_+, IN_-)

Differential Input High Threshold	$\mathrm{V}_{\text {TH }}$			100	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$		-100		mV
Input Current		$\mathrm{V}_{\text {IN }+}=\mathrm{V}_{\text {CC }}$ or $0, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or 0	-1	1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{I N+}=3.6 \mathrm{~V} \text { or } 0, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { or } 0, \\ & \mathrm{~V}_{\mathrm{CC}}=0 \end{aligned}$	-1	1	

LVDS OUTPUTS (OUT_+, OUT_-)

Differential Output Impedance (Note 2)	R DIFF	NC/RSEL = low or open	60	90	118	Ω
		NC/RSEL = high	85	122	155	
Differential Output Voltage	VOD	$\mathrm{R}_{\mathrm{L}}=75 \Omega$, NC/RSEL $=$ open, Figure 1	280	382	470	mV
		$R_{L}=100 \Omega$, NC/RSEL = high, Figure 1				
Change in Magnitude of $V_{O D}$ Between Complementary Output States	$\Delta \mathrm{V}_{\text {OD }}$	RL $=75 \Omega$, NC/RSEL $=$ open, Figure 1			25	mV
		$R_{L}=100 \Omega, N C / R S E L=$ high, Figure 1				
Offset Common-Mode Voltage	Vos	RL $=75 \Omega$, NC/RSEL = open, Figure 1	1.150		1.430	V
		$R_{L}=100 \Omega$, NC/RSEL = high, Figure 1				
Change in Magnitude of VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS	RL $=75 \Omega$, NC/RSEL $=$ open, Figure 1			25	mV
		$R_{L}=100 \Omega$, NC/RSEL $=$ high, Figure 1				

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V} C \mathrm{CC}=+3.0 \mathrm{~V}$ to +3.6 V , NC/RSEL $=$ open for $\mathrm{R}_{\mathrm{L}}=75 \Omega \pm 1 \%, \mathrm{NC} / R S E L=$ high for $\mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%$, differential input voltage V IDI $=$ 0.1 V to $\mathrm{V}_{C C}$, input voltage $\left(\mathrm{V}_{I N+}, \mathrm{V}_{I N}\right)=0$ to $\mathrm{V}_{C C}, E N_{-}=$high, $\mathrm{SELO}=$ low, $\mathrm{SEL} 1=$ high, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{IV}$ ID $=0.2 \mathrm{~V}$, input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Short-Circuit Current	Ios	$\mathrm{V}_{\text {ID }}=+100 \mathrm{mV}$, VOUT_+ $=0$, other output open		-12	-20	mA
		$\mathrm{V}_{\text {ID }}=-100 \mathrm{mV}, \text { V OUT_- }=0,$ other output open				
Both Output Short-Circuit Current	IOSB	$\mathrm{V}_{\text {ID }}=+100 \mathrm{mV}$, $\mathrm{V}_{\text {OUT_+ }}=0, \mathrm{~V}_{\text {OUT_- }}=0$		-12	-20	mA
		$\mathrm{V}_{\text {ID }}=-100 \mathrm{mV}$, $\mathrm{V}_{\text {OUT_+ }}+=0, \mathrm{~V}_{\text {OUT_- }}=0$				
Output High-Z Current	loz+, loz-	Disabled, Vout_+ = VCC or 0, VOUT_- $=V_{C C}$ or 0	-1		1	$\mu \mathrm{A}$
Power-Off Output Current	loff+, loff-	$\begin{aligned} & \text { VCC }=0, \text { VOUT_+ }=3.6 \mathrm{~V} \text { or } 0, \\ & \text { VOUT_- }^{-}=3.6 \mathrm{~V} \text { or } 0 \end{aligned}$	-1		1	$\mu \mathrm{A}$
SUPPLY CURRENT						
Supply Current	Icc	$R L=75 \Omega, C L=5 p F$, enabled, quiescent, Figure 5		38	55	mA
		$R_{L}=100 \Omega, C_{L}=5 p F$, enabled, quiescent, Figure 5		33	50	
		$R_{L}=75 \Omega, C L=5 p F$, enabled, switching at 400 MHz (800 Mbps), Figure 5 (Note 2)		58	70	
		$R_{L}=100 \Omega, C_{L}=5 p F$, enabled, switching at 400 MHz (800 Mbps), Figure 5 (Note 2)		52	65	
High-Z Supply Current	Iccz	Disabled		15	25	mA

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{NC} /$ RSEL $=$ open for $\mathrm{R}_{\mathrm{L}}=75 \Omega \pm 1 \%, \mathrm{NC} / R S E L=$ high for $\mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%, C_{L}=5 \mathrm{pF}$, differential input voltage $\left|V_{I D}\right|=0.15 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, E \mathrm{EN}_{-}=$high, SELO $=$low, SEL1 = high, differential input transition time $=0.6 \mathrm{~ns}(20 \%$ to $80 \%)$, input voltage $\left(V_{I N+}, V_{I N}\right)=0$ to $V_{C C}, L V C M O S / L V T T L$ inputs $=0$ to 3 V with $2 \mathrm{~ns}(10 \%$ to $90 \%)$ transition times, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mid \mathrm{V}_{\text {ID }}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input to SEL Setup Time (Note 5)	tSET	Figures 2, 3	0.4			ns
Input to SEL Hold Time (Note 5)	thold	Figures 2, 3	0.6			ns
SEL to Switched Output	tswitch	Figures 2, 3	1.8	2.5	3.5	ns
Disable Time High to Z	tPHZ	Figure 4			3.8	ns
Disable Time Low to Z	tpLZ	Figure 4			3.8	ns
Enable Time Z to High	tPZH	Figure 4			3.2	ns
Enable Time Z to Low	tPZL	Figure 4			3.2	ns
Propagation Low-to-High Delay	tPLHD	Figures 5, 6	1.7	2.3	3.4	ns
		$\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Figures 5, 6	2.0	2.3	2.9	
Propagation High-to-Low Delay	tPHLD	Figures 5, 6	1.7	2.3	3.4	ns
		$\mathrm{V} C \mathrm{C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; Figures 5, 6	2.0	2.3	2.9	

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{NC} / R S E L=$ open for $\mathrm{R}_{\mathrm{L}}=75 \Omega \pm 1 \%, \mathrm{NC} / R S E L=$ high for $\mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$, differential input voltage $\left|V_{I D}\right|=0.15 \mathrm{~V}$ to $\mathrm{V}_{C C}, E N_{-}=$high, SELO $=$low, SEL1 $=$high, differential input transition time $=0.6 \mathrm{~ns}(20 \%$ to $80 \%)$, input voltage $\left(V_{I N+}, V_{I N-}\right)=0$ to $V_{C C}$, LVCMOS/LVTTL inputs $=0$ to 3 V with $2 \mathrm{~ns}(10 \%$ to $90 \%)$ transition times, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{IV}_{\text {ID }}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Pulse Skew ItplhD -tphld ((ote 6)	tSkEW	Figures 5, 6		25	90	ps
Output Channel-to-Channel Skew	tccs	Figures 5, 7		20	50	ps
Output Low-to-High Transition Time (20% to 80%)	tLHT	Figures 5, 6	160	270	480	ps
Output High-to-Low Transition Time (20\% to 80\%)	thlt	Figures 5, 6	160	270	480	ps
LVDS Data Path Peak-to-Peak Jitter (Note 7)	tJIT	$V_{I D}=200 \mathrm{mV}, \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, 50 \%$ duty cycle, 800 Mbps , input transition time $=$ 600ps (20% to 80%)		10	30	ps
		$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{PRBS}=2^{23}-1$ data pattern, 800 Mbps , input transition time $=600 \mathrm{ps}(20 \%$ to 80%)		65	120	

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except $\mathrm{V}_{T H}, \mathrm{~V}_{\mathrm{TL}}, \mathrm{V}_{\text {ID }}, \mathrm{V}_{\mathrm{OD}}$, and $\Delta \mathrm{V}_{\mathrm{OD}}$.
Note 2: Guaranteed by design and characterization, not production tested.
Note 3: AC parameters are guaranteed by design and characterization.
Note 4: C_{L} includes scope probe and test jig capacitance.
Note 5: tSET and thold time specify that data must be in a stable state before and after the SEL transition.
Note 6: tSKEw is the magnitude difference of differential propagation delay over rated conditions; tsKEW = ItPHLD - tpLHDl.
Note 7: Specification includes test equipment jitter.

Typical Operating Characteristics
$\left(V_{C C}=+3.3 \mathrm{~V}, R_{L}=100 \Omega, N C / R S E L=\right.$ high, $C_{L}=5 p F$, input transition time $=600 \mathrm{ps}(20 \%$ to $80 \%), V_{I D}=200 \mathrm{mV}, \mathrm{PRBS}=2^{23}-1$ data pattern, $\mathrm{V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DIFFERENTIAL OUTPUT EYE PATTERN IN 1:2 SPLITTER MODE AT 800Mbps

CONDITIONS: 3.3V, PRBS = $2^{23}-1$ DATA PATTERN,
$\left|V_{\text {ID }}\right|=200 \mathrm{mV}, V_{C M}=+1.2 \mathrm{~V}$
HORIZONTAL SCALE = 200ps/div VERTICAL SCALE $=100 \mathrm{mV} / \mathrm{div}$

OUTPUT VOLTAGE vs. LOAD

SUPPLY CURRENT vs. DATA RATE

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

Typical Operating Characteristics (continued)

$\left(V_{C C}=+3.3 \mathrm{~V}, R_{L}=100 \Omega, N C / R S E L=\right.$ high, $C_{L}=5 p F$, input transition time $=600 \mathrm{ps}(20 \%$ to $80 \%), V_{I D}=200 \mathrm{mV}, P R B S=2^{23}-1$ data pattern, $\mathrm{V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch

PIN	NAME	FUNCTION
1,2	SEL1, SELO	LVCMOS/LVTTL Logic Inputs. Allow the switch to be configured as a mux, repeater, or splitter.
3,4	INO+, IN0-	LVDS/LVPECL Differential Input 0
5	VCC	Power-Supply Input. Bypass VCC to GND with 0.1 μ F and 0.001μ F ceramic capacitors.
6,7	IN1+, IN1-	LVDS/LVPECL Differential Input 1
8	NC/RSEL	Logic Input. Selects differential output resistance. Set NC/RSEL to open or low when RL = 75 set to high when RL $=100 \Omega$.
9	NC	No Connect
10,11	OUT1-, OUT1+	LVDS Differential Output 1
12	GND	Ground
13,14	OUT0-, OUTO+	LVDS Differential Output 0
16,16	EN1, ENO	LVCMOS/LVTTL Logic Inputs. Enables or disables the outputs. Setting ENO or EN1 high enables the corresponding output, OUTO or OUT1. Setting ENO or EN1 low puts the corresponding output into high impedance (differential output resistance is also high impedance).

Detailed Description

The LVDS interface standard is a signaling method intended for point-to-point communication over a controlled impedance medium as defined by the ANSI TIA/EIA-644 and IEEE 1596.3 standards. LVDS uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise.
The MAX9152 is an $800 \mathrm{Mbps} 2 \times 2$ crosspoint switch designed for high-speed, low-power point-to-point and multidrop interfaces. The device accepts LVDS or differential LVPECL signals and routes them to outputs depending on the selected mode of operation.
A differential input with a magnitude of 0.1 V to VCC with single-ended voltage levels at or within the MAX9152's $V_{C C}$ and ground switches the output. A differential input with a magnitude of at least 0.15 V with single-ended voltage levels at or within the MAX9152's $V_{C C}$ and ground is required to meet the AC specifications.
In the 1:2 splitter mode, the outputs repeat the selected input. This is useful for distributing a signal or creating a copy for use in protection switching. In the repeater

Figure 1. Test Circuit for VOD and VOS
mode, the device operates as a two-channel buffer. Repeating restores signal amplitude, allowing isolation of media segments or longer media drive. The device is a crosspoint switch where any input can be connected to any output or outputs. In 2:1 mux mode, primary and backup signals can be selected to provide a protec-tion-switched, fault-tolerant application.

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

Figure 2. Input to Rising Edge Select Setup, Hold, and Mux Switch Timing Diagram

Figure 3. Input to Falling Edge Select Setup, Hold, and Mux Switch Timing Diagram

Input Fail-Safe
The differential inputs of the MAX9152 do not have internal fail-safe biasing. If fail-safe biasing is required, it can be implemented with external large-value resistors. IN_+ should be pulled up to $V_{C C}$ with $10 k \Omega$ and IN_ should be pulled down to GND with $10 \mathrm{k} \Omega$. The volt-age-divider formed by the $10 \mathrm{k} \Omega$ resistors and the 100Ω termination resistor (across $\mathrm{IN}_{-}+$and IN_{-}-) provides a slight positive differential bias and sets a high state at the device output when inputs are undriven.

Output Resistance

The MAX9152 has a selectable differential output resistance to reduce reflections from impedance discontinuities in the interconnect. Reflections are reduced,
compared to a high-impedance output. A termination resistor at the receiver is still required and is the primary termination for the interconnect. Select the output resistance that best matches the differential characteristic impedance of the interconnect used.

Select Function

The SELO and SEL1 logic inputs allow the device to be configured as a high-speed differential crosspoint, 2:1 mux, 1:2 demux, dual repeater, or 1:2 splitter (Figure 8). See Table 1 for mode selection settings.

Enable Function
The ENO and EN1 logic inputs enable and disable driver outputs OUTO and OUT1. Setting EN0 or EN1 high enables the corresponding driver output. Setting ENO

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

or EN1 low puts the corresponding driver output into a high-impedance state (the differential output resistance also becomes high impedance).

Figure 4. Output Active to High-Z and High-Z to Active Test Circuit and Timing Diagram

Table 1. Input/Output Function Table

SEL0	SEL1	OUT0	OUT1	MODE
L	L	IN0	IN0	$1: 2$ splitter
L	H	IN0	IN1	Repeater
H	L	IN1	IN0	Switch
H	H	IN1	IN1	$1: 2$ splitter

Applications Information

Unused Differential Inputs

Unused differential inputs should be tied to ground and $V_{C C}$ to prevent the high-speed input stage from switching due to noise. IN_+ should be pulled to V_{CC} with $10 \mathrm{k} \Omega$ and IN_{-}- should be pulled to GND with $10 \mathrm{k} \Omega$.

Expanding the Number of LVDS Output Ports

Devices can be cascaded to make larger switches. Total propagation delay and total jitter should be considered to determine the maximum allowable switch size. Three MAX9152s are needed to make a 2 input x 4 output crosspoint switch with two device propagation delays. Seven MAX9152s make a 2 input $\times 8$ output crosspoint with three device delays.

Accepting PECL Inputs

The inputs accept PECL signals with the use of an attenuation circuit, as shown in Figure 9.

Power-Supply Bypassing
Bypass VCC to ground with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in paral-

Figure 5. Output Transition Time, Propagation Delay, and Output Channel-to-Channel Skew Test Circuit

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

Figure 6. Output Transition Time and Propagation Delay Timing Diagram

Figure 7. Output Channel-to-Channel Skew
lel as close to the device as possible, with the smaller value capacitor closest to Vcc.

Differential Traces
Trace characteristics affect the performance of the MAX9152. Use controlled-impedance traces. Eliminate reflections and ensure that noise couples as common mode by running the differential trace pairs close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.
Maintain the distance between the differential traces to avoid discontinuities in differential impedance. Avoid 90° turns and minimize the number of vias to further prevent impedance discontinuities.

Cables and Connectors

Transmission media should have nominal differential impedance of 75Ω or 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.

Figure 8. Programmable Configurations
Avoid the use of unbalanced cables such as ribbon or simple coaxial cable. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the differential receiver.

Board Layout
For LVDS applications, a four-layer printed-circuit (PC) board that provides separate power, ground, and signal planes is recommended.

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch

Figure 9. PECL to LVDS Level Conversion Network

Chip Information
TRANSISTOR COUNT: 880 PROCESS: CMOS

800Mbps LVDS/LVPECL-to-LVDS 2×2 Crosspoint Switch

800Mbps LVDS/LVPECL-to-LVDS 2 x 2 Crosspoint Switch

